Properties

Label 158400.i.4.B
Order $ 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,11):C_{30}$
Order: \(39600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right), \left(\begin{array}{rrrr} 9 & 9 & 8 & 10 \\ 3 & 8 & 0 & 8 \\ 6 & 5 & 3 & 2 \\ 6 & 6 & 8 & 2 \end{array}\right), \left(\begin{array}{rrrr} 8 & 3 & 10 & 7 \\ 1 & 4 & 0 & 10 \\ 2 & 9 & 6 & 8 \\ 2 & 2 & 10 & 2 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 1 & 3 & 7 & 4 \\ 2 & 10 & 9 & 7 \\ 1 & 8 & 10 & 8 \\ 6 & 1 & 9 & 8 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 1 & 6 \\ 5 & 9 & 6 & 1 \\ 7 & 4 & 2 & 10 \\ 1 & 7 & 6 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $\GL(2,11):D_6$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6).C_2^5.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2^2\times C_4\times \PSL(2,11).C_2$
$W$$C_2\times \PGL(2,11)$, of order \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{60}$
Normalizer:$\GL(2,11):D_6$
Complements:$C_2^2$
Minimal over-subgroups:$(S_3\times \SL(2,11)):C_{10}$$C_{60}.\PGL(2,11)$$C_{60}.\PGL(2,11)$
Maximal under-subgroups:$C_{15}\times \SL(2,11)$$\SL(2,11):C_{10}$$\SL(2,11):C_6$$\SL(2,5):C_{30}$$C_{55}:C_{60}$$D_{12}:C_{30}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image not computed