Properties

Label 158400.i.1584.C
Order $ 2^{2} \cdot 5^{2} $
Index $ 2^{4} \cdot 3^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}^2$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Index: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 5 & 2 & 4 & 7 \\ 9 & 4 & 2 & 4 \\ 4 & 5 & 7 & 9 \\ 8 & 4 & 2 & 6 \end{array}\right), \left(\begin{array}{rrrr} 0 & 6 & 1 & 10 \\ 5 & 8 & 6 & 1 \\ 1 & 4 & 6 & 5 \\ 2 & 1 & 6 & 3 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.

Ambient group ($G$) information

Description: $\GL(2,11):D_6$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6).C_2^5.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $S_3\times \GL(2,5)$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{12}:C_{10}^2$
Normalizer:$C_5\times D_{12}:D_{10}$
Normal closure:$\GL(2,11)$
Core:$C_{10}$
Minimal over-subgroups:$C_{10}\times F_{11}$$C_{10}\times C_{30}$$C_2\times C_{10}^2$$C_{10}\wr C_2$$C_{10}\wr C_2$$C_{10}\times C_{20}$$C_{10}\wr C_2$
Maximal under-subgroups:$C_5\times C_{10}$$C_5\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$

Other information

Number of subgroups in this autjugacy class$66$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-12$
Projective image not computed