Properties

Label 158400.f.6600.bc1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:Q_8$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(6600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 3 & 9 & 3 & 2 \\ 9 & 6 & 3 & 3 \\ 7 & 5 & 5 & 2 \\ 10 & 7 & 2 & 8 \end{array}\right), \left(\begin{array}{rrrr} 0 & 5 & 0 & 2 \\ 9 & 6 & 8 & 0 \\ 7 & 9 & 5 & 6 \\ 10 & 7 & 2 & 0 \end{array}\right), \left(\begin{array}{rrrr} 8 & 6 & 2 & 5 \\ 6 & 10 & 2 & 2 \\ 1 & 7 & 2 & 5 \\ 3 & 1 & 5 & 4 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{30}:Q_8$
Normal closure:$C_3:Q_8\times \SL(2,11)$
Core:$C_2$
Minimal over-subgroups:$C_{15}:Q_8$$C_3^2:Q_8$$C_6:Q_8$
Maximal under-subgroups:$C_{12}$$C_3:C_4$$C_3:C_4$$Q_8$
Autjugate subgroups:158400.f.6600.bc1.a2158400.f.6600.bc1.b1158400.f.6600.bc1.b2

Other information

Number of subgroups in this conjugacy class$660$
Möbius function not computed
Projective image$C_5\times \SL(2,11):D_6$