Subgroup ($H$) information
| Description: | $C_{30}:Q_8$ |
| Order: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
| Index: | \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\left(\begin{array}{rrrr}
8 & 3 & 2 & 3 \\
10 & 8 & 8 & 0 \\
3 & 7 & 6 & 2 \\
1 & 7 & 4 & 9
\end{array}\right), \left(\begin{array}{rrrr}
1 & 6 & 0 & 2 \\
10 & 7 & 9 & 10 \\
6 & 2 & 9 & 2 \\
5 & 8 & 8 & 0
\end{array}\right), \left(\begin{array}{rrrr}
1 & 4 & 3 & 8 \\
6 & 4 & 3 & 4 \\
7 & 8 & 1 & 10 \\
9 & 5 & 9 & 8
\end{array}\right), \left(\begin{array}{rrrr}
8 & 7 & 2 & 8 \\
10 & 7 & 3 & 5 \\
9 & 8 & 4 & 2 \\
9 & 3 & 2 & 4
\end{array}\right), \left(\begin{array}{rrrr}
9 & 0 & 0 & 0 \\
0 & 9 & 0 & 0 \\
0 & 0 & 9 & 0 \\
0 & 0 & 0 & 9
\end{array}\right), \left(\begin{array}{rrrr}
8 & 0 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 0 & 8 & 0 \\
0 & 0 & 0 & 8
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is the radical (hence characteristic, normal, and solvable), nonabelian, supersolvable (hence monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $C_{15}:Q_8\times \SL(2,11)$ |
| Order: | \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
| Exponent: | \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $\PSL(2,11)$ |
| Order: | \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Automorphism Group: | $\PGL(2,11)$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $0$ |
The quotient is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$ |
| $\operatorname{Aut}(H)$ | $(D_6\times C_4^2):D_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
| Möbius function | not computed |
| Projective image | not computed |