Properties

Label 158400.f.660.a1.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{30}:Q_8$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 8 & 3 & 2 & 3 \\ 10 & 8 & 8 & 0 \\ 3 & 7 & 6 & 2 \\ 1 & 7 & 4 & 9 \end{array}\right), \left(\begin{array}{rrrr} 1 & 6 & 0 & 2 \\ 10 & 7 & 9 & 10 \\ 6 & 2 & 9 & 2 \\ 5 & 8 & 8 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 3 & 8 \\ 6 & 4 & 3 & 4 \\ 7 & 8 & 1 & 10 \\ 9 & 5 & 9 & 8 \end{array}\right), \left(\begin{array}{rrrr} 8 & 7 & 2 & 8 \\ 10 & 7 & 3 & 5 \\ 9 & 8 & 4 & 2 \\ 9 & 3 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), nonabelian, supersolvable (hence monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $\PSL(2,11)$
Order: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: $\PGL(2,11)$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $0$

The quotient is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $(D_6\times C_4^2):D_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}\times \SL(2,11)$
Normalizer:$C_{15}:Q_8\times \SL(2,11)$
Minimal over-subgroups:$C_{330}:Q_8$$C_{12}.C_{10}^2$$C_{60}.D_6$$C_{60}:Q_8$
Maximal under-subgroups:$C_2\times C_{60}$$C_6:C_{20}$$C_6:C_{20}$$C_{15}:Q_8$$C_{15}:Q_8$$C_{15}:Q_8$$C_{15}:Q_8$$Q_8\times C_{10}$$C_6:Q_8$

Other information

Möbius function not computed
Projective image not computed