Properties

Label 158400.f.2.b1.a1
Order $ 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:C_{20}\times \SL(2,11)$
Order: \(79200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Index: \(2\)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 5 & 4 & 8 & 1 \\ 10 & 1 & 10 & 0 \\ 9 & 6 & 8 & 5 \\ 0 & 3 & 2 & 5 \end{array}\right), \left(\begin{array}{rrrr} 10 & 9 & 3 & 6 \\ 6 & 0 & 1 & 6 \\ 9 & 7 & 1 & 0 \\ 8 & 3 & 6 & 3 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 3 & 8 \\ 6 & 4 & 3 & 4 \\ 7 & 8 & 1 & 10 \\ 9 & 5 & 9 & 8 \end{array}\right), \left(\begin{array}{rrrr} 8 & 7 & 2 & 8 \\ 10 & 7 & 3 & 5 \\ 9 & 8 & 4 & 2 \\ 9 & 3 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 4 & 1 & 2 & 3 \\ 4 & 2 & 2 & 9 \\ 4 & 4 & 6 & 9 \\ 1 & 1 & 2 & 10 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2^2\times C_4\times \PSL(2,11).C_2\times S_3$
$\card{W}$\(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{15}:Q_8\times \SL(2,11)$
Minimal over-subgroups:$C_{15}:Q_8\times \SL(2,11)$
Maximal under-subgroups:$C_{30}\times \SL(2,11)$$C_{20}\times \SL(2,11)$$C_3:C_4\times \SL(2,11)$$C_3:C_{20}\times \SL(2,5)$$C_3:C_{20}\times \SL(2,5)$$C_{330}:C_{20}$$C_3^2:(Q_8\times C_{20})$
Autjugate subgroups:158400.f.2.b1.b1

Other information

Möbius function not computed
Projective image not computed