Properties

Label 158400.f.19800.d1.a1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(19800\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rrrr} 4 & 6 & 9 & 0 \\ 8 & 7 & 0 & 2 \\ 4 & 0 & 7 & 6 \\ 0 & 7 & 8 & 4 \end{array}\right), \left(\begin{array}{rrrr} 6 & 3 & 10 & 3 \\ 5 & 0 & 7 & 10 \\ 5 & 0 & 0 & 8 \\ 10 & 5 & 6 & 5 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{12}\times C_{60}$
Normalizer:$(C_3\times C_{15}):Q_8^2$
Normal closure:$C_4\times \SL(2,11)$
Core:$C_2^2$
Minimal over-subgroups:$C_2\times C_{20}$$C_{10}:C_4$$C_2\times C_{12}$$C_2\times C_{12}$$C_6:C_4$$C_6:C_4$$C_2\times C_{12}$$C_4^2$$C_4:C_4$$C_4:C_4$$C_4:C_4$$C_2\times Q_8$$C_2\times Q_8$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Number of subgroups in this conjugacy class$55$
Möbius function not computed
Projective image not computed