Properties

Label 158400.f.144.c1.d1
Order $ 2^{2} \cdot 5^{2} \cdot 11 $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{220}:C_5$
Order: \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 8 & 3 & 2 & 3 \\ 10 & 8 & 8 & 0 \\ 3 & 7 & 6 & 2 \\ 1 & 7 & 4 & 9 \end{array}\right), \left(\begin{array}{rrrr} 4 & 6 & 9 & 0 \\ 8 & 7 & 0 & 2 \\ 4 & 0 & 7 & 6 \\ 0 & 7 & 8 & 4 \end{array}\right), \left(\begin{array}{rrrr} 7 & 2 & 1 & 4 \\ 2 & 4 & 5 & 5 \\ 7 & 7 & 10 & 10 \\ 6 & 10 & 3 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 7 & 1 & 8 \\ 10 & 3 & 1 & 10 \\ 0 & 6 & 9 & 9 \\ 6 & 4 & 4 & 3 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $D_{110}:C_{20}$, of order \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
$W$$C_{11}:C_{10}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_{20}$
Normalizer:$C_{44}.C_{10}^2$
Normal closure:$C_3:C_{20}\times \SL(2,11)$
Core:$C_{10}$
Minimal over-subgroups:$C_{165}:C_{20}$$C_{110}:C_{20}$$C_{220}.C_{10}$$C_{220}.C_{10}$
Maximal under-subgroups:$C_{110}:C_5$$C_{220}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_5\times C_{20}$
Autjugate subgroups:158400.f.144.c1.a1158400.f.144.c1.b1158400.f.144.c1.c1

Other information

Number of subgroups in this conjugacy class$36$
Möbius function not computed
Projective image not computed