Properties

Label 158400.f.13200.p1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 0 & 8 & 8 & 8 \\ 8 & 2 & 10 & 0 \\ 9 & 10 & 8 & 1 \\ 5 & 3 & 4 & 0 \end{array}\right), \left(\begin{array}{rrrr} 3 & 9 & 3 & 2 \\ 9 & 6 & 3 & 3 \\ 7 & 5 & 5 & 2 \\ 10 & 7 & 2 & 8 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{12}\times C_{60}$
Normalizer:$C_{60}.D_{12}$
Normal closure:$C_4\times \SL(2,11)$
Core:$C_2$
Minimal over-subgroups:$C_{60}$$C_3\times C_{12}$$C_2\times C_{12}$$C_3:Q_8$$C_3:Q_8$
Maximal under-subgroups:$C_6$$C_4$

Other information

Number of subgroups in this conjugacy class$110$
Möbius function not computed
Projective image$C_5\times \SL(2,11):D_6$