Properties

Label 158400.f.120.h1.b1
Order $ 2^{3} \cdot 3 \cdot 5 \cdot 11 $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{165}:Q_8$
Order: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 1 & 6 & 0 & 2 \\ 10 & 7 & 9 & 10 \\ 6 & 2 & 9 & 2 \\ 5 & 8 & 8 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 3 & 8 \\ 6 & 4 & 3 & 4 \\ 7 & 8 & 1 & 10 \\ 9 & 5 & 9 & 8 \end{array}\right), \left(\begin{array}{rrrr} 8 & 7 & 2 & 8 \\ 10 & 7 & 3 & 5 \\ 9 & 8 & 4 & 2 \\ 9 & 3 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 9 & 2 & 5 & 2 \\ 3 & 9 & 9 & 0 \\ 2 & 1 & 4 & 5 \\ 8 & 1 & 10 & 6 \end{array}\right), \left(\begin{array}{rrrr} 2 & 10 & 5 & 8 \\ 0 & 0 & 8 & 4 \\ 5 & 6 & 3 & 9 \\ 8 & 7 & 7 & 8 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_{15}:(C_4^2.C_2^3)$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$W$$S_3\times C_{10}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_{110}$
Normalizer:$C_{132}.C_{10}^2$
Normal closure:$C_{15}:Q_8\times \SL(2,11)$
Core:$C_{15}:Q_8$
Minimal over-subgroups:$C_{660}.C_{10}$$C_{330}:Q_8$
Maximal under-subgroups:$C_{660}$$C_3:C_{220}$$C_3:C_{220}$$Q_8\times C_{55}$$C_{33}:Q_8$$C_{15}:Q_8$
Autjugate subgroups:158400.f.120.h1.a1158400.f.120.h1.c1158400.f.120.h1.d1

Other information

Number of subgroups in this conjugacy class$12$
Möbius function not computed
Projective image not computed