Properties

Label 158400.f.1100.o1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 5^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 0 & 8 & 8 & 8 \\ 8 & 2 & 10 & 0 \\ 9 & 10 & 8 & 1 \\ 5 & 3 & 4 & 0 \end{array}\right), \left(\begin{array}{rrrr} 5 & 4 & 5 & 6 \\ 10 & 6 & 10 & 10 \\ 4 & 9 & 9 & 0 \\ 9 & 5 & 10 & 8 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 3 & 8 \\ 6 & 4 & 3 & 4 \\ 7 & 8 & 1 & 10 \\ 9 & 5 & 9 & 8 \end{array}\right), \left(\begin{array}{rrrr} 8 & 7 & 2 & 8 \\ 10 & 7 & 3 & 5 \\ 9 & 8 & 4 & 2 \\ 9 & 3 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 0 & 5 & 0 & 2 \\ 9 & 6 & 8 & 0 \\ 7 & 9 & 5 & 6 \\ 10 & 7 & 2 & 0 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_2\times \SL(2,3).C_2^6$, of order \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \)
$W$$D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$(C_3\times C_{15}):Q_8^2$
Normal closure:$C_3:Q_8\times \SL(2,11)$
Core:$C_2\times C_6$
Minimal over-subgroups:$C_{60}.D_6$$C_{12}.D_{12}$$C_6^2.C_2^3$$C_6^2.C_2^3$
Maximal under-subgroups:$C_6\times C_{12}$$C_6.D_6$$C_6.D_6$$C_3^2:Q_8$$C_6:Q_8$$C_6:Q_8$$C_6:Q_8$
Autjugate subgroups:158400.f.1100.o1.a2

Other information

Number of subgroups in this conjugacy class$55$
Möbius function not computed
Projective image not computed