Properties

Label 158400.f.110.e1.a1
Order $ 2^{5} \cdot 3^{2} \cdot 5 $
Index $ 2 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}^2.C_{10}$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Index: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rrrr} 5 & 4 & 8 & 1 \\ 10 & 1 & 10 & 0 \\ 9 & 6 & 8 & 5 \\ 0 & 3 & 2 & 5 \end{array}\right), \left(\begin{array}{rrrr} 1 & 6 & 0 & 2 \\ 10 & 7 & 9 & 10 \\ 6 & 2 & 9 & 2 \\ 5 & 8 & 8 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 2 & 2 & 2 \\ 2 & 6 & 8 & 0 \\ 5 & 8 & 2 & 3 \\ 4 & 9 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrr} 9 & 5 & 9 & 2 \\ 7 & 2 & 7 & 7 \\ 5 & 3 & 3 & 0 \\ 3 & 9 & 7 & 10 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 3 & 8 \\ 6 & 4 & 3 & 4 \\ 7 & 8 & 1 & 10 \\ 9 & 5 & 9 & 8 \end{array}\right), \left(\begin{array}{rrrr} 8 & 7 & 2 & 8 \\ 10 & 7 & 3 & 5 \\ 9 & 8 & 4 & 2 \\ 9 & 3 & 2 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{15}:Q_8\times \SL(2,11)$
Order: \(158400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times S_3).C_2^2.\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_3:(C_2^4.C_2^6.C_2)$
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{60}$
Normalizer:$(C_3\times C_{15}):Q_8^2$
Normal closure:$(C_2\times C_{60}).\PSL(2,11)$
Core:$C_2\times C_{60}$
Minimal over-subgroups:$(C_2\times C_{60}).\PSL(2,11)$$(C_3\times C_{15}):Q_8^2$
Maximal under-subgroups:$C_{12}\times C_{60}$$C_{12}:C_{60}$$C_{12}:C_{60}$$C_{12}:C_{60}$$C_6.D_4\times C_{15}$$C_6.D_4\times C_{15}$$C_{60}.D_6$$Q_8\times C_{60}$$C_{60}:Q_8$$C_{12}^2.C_2$

Other information

Number of subgroups in this conjugacy class$55$
Möbius function not computed
Projective image not computed