Properties

Label 15840.j.720.a1.a1
Order $ 2 \cdot 11 $
Index $ 2^{4} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Index: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 10 & 2 & 9 & 4 \\ 1 & 2 & 10 & 9 \\ 1 & 1 & 0 & 9 \\ 10 & 1 & 10 & 3 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\SL(2,11):D_6$
Order: \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(S_3\times D_4).\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_5$, of order \(5\)

Related subgroups

Centralizer:$C_{33}:Q_8$
Normalizer:$C_{132}.C_{10}$
Normal closure:$\SL(2,11)$
Core:$C_2$
Minimal over-subgroups:$C_{11}:C_{10}$$C_{66}$$C_{44}$$C_{44}$$C_{44}$
Maximal under-subgroups:$C_{11}$$C_2$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function$0$
Projective image not computed