Properties

Label 15840.j.660.l1.b1
Order $ 2^{3} \cdot 3 $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 4 & 8 & 1 & 10 \\ 10 & 8 & 2 & 1 \\ 9 & 1 & 3 & 3 \\ 5 & 9 & 1 & 7 \end{array}\right), \left(\begin{array}{rrrr} 9 & 3 & 2 & 0 \\ 0 & 2 & 0 & 9 \\ 4 & 0 & 2 & 3 \\ 0 & 7 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 2 & 10 & 7 & 6 \\ 2 & 10 & 9 & 7 \\ 8 & 1 & 2 & 1 \\ 7 & 8 & 9 & 10 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $\SL(2,11):D_6$
Order: \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(S_3\times D_4).\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4:D_6$
Normal closure:$\SL(2,11):D_6$
Core:$C_2$
Minimal over-subgroups:$S_3\times D_6$$S_3\times D_4$$S_3\times D_4$$C_2\times D_{12}$
Maximal under-subgroups:$D_6$$C_2\times C_6$$D_6$$D_6$$C_2^3$
Autjugate subgroups:15840.j.660.l1.a115840.j.660.l1.a215840.j.660.l1.b2

Other information

Number of subgroups in this conjugacy class$165$
Möbius function$0$
Projective image not computed