Subgroup ($H$) information
| Description: | $S_3^2$ |
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Index: | \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rrrr}
2 & 2 & 6 & 7 \\
1 & 6 & 10 & 6 \\
7 & 2 & 5 & 9 \\
9 & 7 & 10 & 9
\end{array}\right), \left(\begin{array}{rrrr}
4 & 8 & 1 & 10 \\
10 & 8 & 2 & 1 \\
9 & 1 & 3 & 3 \\
5 & 9 & 1 & 7
\end{array}\right), \left(\begin{array}{rrrr}
3 & 0 & 10 & 5 \\
8 & 2 & 10 & 9 \\
6 & 7 & 8 & 4 \\
8 & 0 & 7 & 10
\end{array}\right), \left(\begin{array}{rrrr}
2 & 8 & 1 & 4 \\
10 & 6 & 0 & 1 \\
9 & 2 & 4 & 3 \\
9 & 9 & 1 & 8
\end{array}\right)$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Ambient group ($G$) information
| Description: | $\SL(2,11):D_6$ |
| Order: | \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \) |
| Exponent: | \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(S_3\times D_4).\PSL(2,11).C_2$ |
| $\operatorname{Aut}(H)$ | $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| $W$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $220$ |
| Möbius function | $0$ |
| Projective image | $\SL(2,11):D_6$ |