Subgroup ($H$) information
| Description: | $C_6$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Index: | \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\left(\begin{array}{rrrr}
2 & 8 & 1 & 4 \\
10 & 6 & 0 & 1 \\
9 & 2 & 4 & 3 \\
9 & 9 & 1 & 8
\end{array}\right), \left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 10 & 0 & 0 \\
0 & 0 & 10 & 0 \\
0 & 0 & 0 & 10
\end{array}\right)$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the socle (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $\SL(2,11):D_6$ |
| Order: | \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \) |
| Exponent: | \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
| Description: | $C_2^2\times \PSL(2,11)$ |
| Order: | \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \) |
| Exponent: | \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \) |
| Automorphism Group: | $S_3\times \PGL(2,11)$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) |
| Outer Automorphisms: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $1$ |
The quotient is nonabelian, an A-group, and nonsolvable.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(S_3\times D_4).\PSL(2,11).C_2$ |
| $\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Möbius function | $1320$ |
| Projective image | not computed |