Properties

Label 1584.318.6.a1.a1
Order $ 2^{3} \cdot 3 \cdot 11 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{66}$
Order: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Generators: $a, c^{66}, c^{88}, b^{3}, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{66}:C_{12}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times C_{11}:C_5).C_2^6$
$\operatorname{Aut}(H)$ $(C_{33}\times A_4).C_5.C_2^3$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_{66}$, of order \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$D_{66}:C_{12}$
Minimal over-subgroups:$C_6\times D_{66}$$D_{66}:C_4$
Maximal under-subgroups:$C_2\times C_{66}$$D_{66}$$D_{66}$$D_{66}$$D_{66}$$C_2\times D_{22}$$C_2\times D_6$

Other information

Möbius function$1$
Projective image$C_3\times D_{66}$