Properties

Label 1584.318.528.c1.a1
Order $ 3 $
Index $ 2^{4} \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Exponent: \(3\)
Generators: $b^{2}c^{88}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $D_{66}:C_{12}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times C_{11}:C_5).C_2^6$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6\times C_{132}$
Normalizer:$C_6\times C_{132}$
Normal closure:$C_3^2$
Core:$C_1$
Minimal over-subgroups:$C_{33}$$C_3^2$$C_6$$C_6$$C_6$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{66}:C_{12}$