Properties

Label 1584.318.396.a1.a1
Order $ 2^{2} $
Index $ 2^{2} \cdot 3^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Exponent: \(2\)
Generators: $b^{3}, c^{66}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $D_{66}:C_{12}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_3\times D_{66}$
Order: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Automorphism Group: $C_{11}:(C_2^2\times C_{10}\times S_3)$
Outer Automorphisms: $C_2^2\times C_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times C_{11}:C_5).C_2^6$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(21120\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_{66}:C_{12}$
Normalizer:$D_{66}:C_{12}$
Minimal over-subgroups:$C_2\times C_{22}$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_2\times C_4$$C_2^3$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$$C_2$

Other information

Möbius function$-66$
Projective image$C_3\times D_{66}$