Properties

Label 1584.318.2.c1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{66}:C_{12}$
Order: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Index: \(2\)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Generators: $ac^{33}, c^{12}, b^{2}, b^{3}c^{66}, c^{66}, c^{88}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_{66}:C_{12}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times C_{11}:C_5).C_2^6$
$\operatorname{Aut}(H)$ $C_{66}.C_{10}.C_2^4$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{66}$, of order \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$D_{66}:C_{12}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{66}:C_{12}$
Maximal under-subgroups:$C_6\times C_{66}$$C_{33}:C_{12}$$C_{66}:C_4$$C_{22}:C_{12}$$C_6:C_{12}$

Other information

Möbius function$-1$
Projective image$D_{66}$