Properties

Label 1584.309.528.b1.a1
Order $ 3 $
Index $ 2^{4} \cdot 3 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Exponent: \(3\)
Generators: $b^{176}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{264}:C_6$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Quotient group ($Q$) structure

Description: $C_{264}:C_2$
Order: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Automorphism Group: $C_2^4\times F_{11}$, of order \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_2^2\times C_{10}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{33}.(C_2^5\times C_{10})$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_{264}$
Normalizer:$C_{264}:C_6$
Complements:$C_{264}:C_2$
Minimal over-subgroups:$C_{33}$$C_3^2$$C_6$$S_3$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_{264}:C_6$