Properties

Label 1584.309.48.c1.a1
Order $ 3 \cdot 11 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{33}$
Order: \(33\)\(\medspace = 3 \cdot 11 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(33\)\(\medspace = 3 \cdot 11 \)
Generators: $a^{2}b^{176}, b^{24}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{264}:C_6$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{33}.(C_2^5\times C_{10})$
$\operatorname{Aut}(H)$ $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\operatorname{res}(S)$$C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_{264}$
Normalizer:$C_3\times C_{264}$
Normal closure:$C_3\times C_{33}$
Core:$C_{11}$
Minimal over-subgroups:$C_3\times C_{33}$$C_{66}$
Maximal under-subgroups:$C_{11}$$C_3$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{264}:C_6$