Properties

Label 1584.277.3.a1.a1
Order $ 2^{4} \cdot 3 \cdot 11 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{264}:C_2$
Order: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Index: \(3\)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Generators: $a^{3}, b^{24}, a^{2}, b^{66}, b^{33}, b^{132}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{264}:C_6$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times Q_8).C_{30}.C_2^4$
$\operatorname{Aut}(H)$ $C_2^4\times F_{11}$, of order \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$C_2^4\times F_{11}$, of order \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_{22}$, of order \(44\)\(\medspace = 2^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_3\times C_{12}$
Normalizer:$C_{264}:C_6$
Complements:$C_3$ $C_3$ $C_3$
Minimal over-subgroups:$C_{264}:C_6$
Maximal under-subgroups:$C_{12}\times D_{11}$$C_{264}$$C_{11}:C_{24}$$C_{88}:C_2$$C_3\times \OD_{16}$
Autjugate subgroups:1584.277.3.a1.b11584.277.3.a1.c11584.277.3.a1.d1

Other information

Möbius function$-1$
Projective image$C_3\times D_{22}$