Properties

Label 1584.173.72.a1.a1
Order $ 2 \cdot 11 $
Index $ 2^{3} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $b^{12}, c^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{132}.D_6$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $S_3\times C_{12}$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{33}.(C_2^5\times C_{10})$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1056\)\(\medspace = 2^{5} \cdot 3 \cdot 11 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3:C_{264}$
Normalizer:$C_{132}.D_6$
Minimal over-subgroups:$C_{66}$$C_{66}$$C_{66}$$C_{44}$$D_{22}$$C_{11}:C_4$
Maximal under-subgroups:$C_{11}$$C_2$

Other information

Möbius function$0$
Projective image$D_{33}:C_{12}$