Properties

Label 1584.171.4.c1.a1
Order $ 2^{2} \cdot 3^{2} \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{33}:C_{12}$
Order: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Generators: $ab^{6}, c, b^{132}, b^{176}, b^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{132}.D_6$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{33}.(C_2^5\times C_{10})$
$\operatorname{Aut}(H)$ $(C_{11}\times Q_8).C_{15}.C_2^3$
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$D_{22}$, of order \(44\)\(\medspace = 2^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_3\times C_{12}$
Normalizer:$C_{132}.D_6$
Minimal over-subgroups:$C_{132}:C_6$
Maximal under-subgroups:$C_3\times C_{66}$$C_{11}:C_{12}$$C_{11}:C_{12}$$C_{11}:C_{12}$$C_3\times C_{12}$

Other information

Möbius function$0$
Projective image$C_6.D_{22}$