Properties

Label 1584.122.44.g1.a1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9:C_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ab, b^{2}, c^{176}, c^{132}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{22}.D_{18}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{30}.C_2^4$
$\operatorname{Aut}(H)$ $C_{18}:C_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_{18}:C_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$D_{18}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4:D_9$
Normal closure:$C_{99}:C_4$
Core:$C_{18}$
Minimal over-subgroups:$C_{99}:C_4$$C_9:D_4$$C_{18}:C_4$$C_9:Q_8$
Maximal under-subgroups:$C_{18}$$C_3:C_4$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-2$
Projective image$D_9\times D_{22}$