Properties

Label 1584.122.2.g1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 11 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{99}:Q_8$
Order: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Index: \(2\)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Generators: $ac^{9}, c^{132}, b^{2}, c^{176}, b^{3}c^{121}, c^{18}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{22}.D_{18}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{30}.C_2^4$
$\operatorname{Aut}(H)$ $C_{99}.C_{30}.C_2^3$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(23760\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_9\times D_{22}$, of order \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{22}.D_{18}$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$D_{22}.D_{18}$
Maximal under-subgroups:$C_9:C_{44}$$C_{11}:C_{36}$$C_{99}:C_4$$C_{33}:Q_8$$C_9:Q_8$

Other information

Möbius function$-1$
Projective image$D_9\times D_{22}$