Properties

Label 15708.c.476.a1.a1
Order $ 3 \cdot 11 $
Index $ 2^{2} \cdot 7 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{33}$
Order: \(33\)\(\medspace = 3 \cdot 11 \)
Index: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Exponent: \(33\)\(\medspace = 3 \cdot 11 \)
Generators: $b^{154}, b^{21}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{77}:C_{204}$
Order: \(15708\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 17 \)
Exponent: \(15708\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_7:C_{68}$
Order: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Exponent: \(476\)\(\medspace = 2^{2} \cdot 7 \cdot 17 \)
Automorphism Group: $D_{14}:C_{48}$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{77}.C_{240}.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{7854}$
Normalizer:$C_{77}:C_{204}$
Complements:$C_7:C_{68}$
Minimal over-subgroups:$C_{561}$$C_{231}$$C_{66}$
Maximal under-subgroups:$C_{11}$$C_3$

Other information

Möbius function$0$
Projective image$C_{1309}:C_4$