Subgroup ($H$) information
| Description: | $C_{28}.D_{14}$ |
| Order: | \(784\)\(\medspace = 2^{4} \cdot 7^{2} \) |
| Index: | \(2\) |
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Generators: |
$a, d^{4}, d^{7}, d^{14}, b, c^{2}$
|
| Derived length: | $2$ |
The subgroup is normal, maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_2.D_{14}^2$ |
| Order: | \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \) |
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7:D_7:C_3.C_2^4.C_6.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_7^2.C_6^2.C_2^5$ |
| $\card{\operatorname{res}(S)}$ | \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $D_7\times D_{14}$, of order \(392\)\(\medspace = 2^{3} \cdot 7^{2} \) |
Related subgroups
| Centralizer: | $C_2^2$ | ||||
| Normalizer: | $C_2.D_{14}^2$ | ||||
| Complements: | $C_2$ $C_2$ | ||||
| Minimal over-subgroups: | $C_2.D_{14}^2$ | ||||
| Maximal under-subgroups: | $C_{28}:D_7$ | $C_{14}.D_{14}$ | $C_7^2:Q_8$ | $C_7^2:Q_8$ | $Q_8\times D_7$ |
Other information
| Number of subgroups in this autjugacy class | $8$ |
| Number of conjugacy classes in this autjugacy class | $8$ |
| Möbius function | $-1$ |
| Projective image | $D_{14}^2$ |