Properties

Label 1568.655.8.a1
Order $ 2^{2} \cdot 7^{2} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}^2$
Order: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $b^{14}c^{14}, b^{4}, c^{4}, c^{14}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $C_{14}^2.C_2^3$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{14}).C_6^2.C_2^6$
$\operatorname{Aut}(H)$ $S_3\times \GL(2,7)$, of order \(12096\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_6^2$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(896\)\(\medspace = 2^{7} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4:C_{14}^2$
Normalizer:$C_{14}^2.C_2^3$
Minimal over-subgroups:$C_2\times C_{14}^2$$C_{14}\times C_{28}$$C_{14}:C_{28}$$C_{14}:C_{28}$
Maximal under-subgroups:$C_7\times C_{14}$$C_7\times C_{14}$$C_2\times C_{14}$$C_2\times C_{14}$$C_2\times C_{14}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-8$
Projective image$C_2\times D_{14}$