Properties

Label 1568.655.784.b1
Order $ 2 $
Index $ 2^{4} \cdot 7^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)
Exponent: \(2\)
Generators: $c^{14}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{14}^2.C_2^3$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{14}^2:C_2^2$
Order: \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Automorphism Group: $C_7.(C_6^2\times D_4).C_2^2$
Outer Automorphisms: $D_4\times C_6^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{14}).C_6^2.C_2^6$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(64512\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{14}^2.C_2^3$
Normalizer:$C_{14}^2.C_2^3$
Minimal over-subgroups:$C_{14}$$C_{14}$$C_{14}$$C_2^2$$C_4$$C_2^2$$C_4$
Maximal under-subgroups:$C_1$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{14}^2:C_2^2$