Subgroup ($H$) information
Description: | $C_{14}:C_{28}$ |
Order: | \(392\)\(\medspace = 2^{3} \cdot 7^{2} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$abc^{14}, c^{4}, c^{14}, b^{14}c^{21}, b^{4}c^{14}$
|
Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $C_{28}.D_{28}$ |
Order: | \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7.(C_6^2\times D_4).C_2^3$ |
$\operatorname{Aut}(H)$ | $D_{28}:C_6^2$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \) |
$\operatorname{res}(S)$ | $D_{28}:C_6^2$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_2\times D_{28}$ |