Properties

Label 1568.617.4.e1.a1
Order $ 2^{3} \cdot 7^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}:C_{28}$
Order: \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $abc^{14}, c^{4}, c^{14}, b^{14}c^{14}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{28}.D_{28}$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{14}.(C_6^2\times D_4).C_2^3$
$\operatorname{Aut}(H)$ $D_{28}:C_6^2$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$D_{14}:C_6^2$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2\times D_{14}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$C_{28}.D_{28}$
Minimal over-subgroups:$D_{14}:C_{28}$$C_{28}.D_{14}$$C_{28}:C_{28}$
Maximal under-subgroups:$C_{14}^2$$C_7:C_{28}$$C_{14}:C_4$$C_2\times C_{28}$
Autjugate subgroups:1568.617.4.e1.b1

Other information

Möbius function$2$
Projective image$C_2\times D_{14}$