Properties

Label 1568.609.2.d1.b1
Order $ 2^{4} \cdot 7^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{28}.D_{14}$
Order: \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)
Index: \(2\)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a, b^{4}, c^{14}, c^{4}, b^{21}c^{21}, b^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{14}^2.C_2^3$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{14}.(C_6^2\times D_4).C_2^3$
$\operatorname{Aut}(H)$ $C_{14}.(C_6^2\times D_4).C_2^2$
$\card{\operatorname{res}(S)}$\(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\times D_{14}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$C_{14}^2.C_2^3$
Minimal over-subgroups:$C_{14}^2.C_2^3$
Maximal under-subgroups:$C_{14}\times C_{28}$$C_{14}:C_{28}$$C_{14}:C_{28}$$C_7^2:Q_8$$C_7^2:Q_8$$C_{14}:Q_8$$Q_8\times C_{14}$
Autjugate subgroups:1568.609.2.d1.a1

Other information

Möbius function$-1$
Projective image$C_2\times D_{14}$