Properties

Label 1568.571.2.f1.a1
Order $ 2^{4} \cdot 7^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}^2.C_2^2$
Order: \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)
Index: \(2\)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $ab^{2}c^{7}, d^{2}, d^{7}, b^{2}, b, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{14}^2.C_2^3$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_7^2.C_6^2.C_2^5$
$\operatorname{Aut}(H)$ $C_7^2.(C_2^3\times C_6^2).C_2^3$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(28224\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_7\times D_{14}$, of order \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{14}^2.C_2^3$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_{14}^2.C_2^3$
Maximal under-subgroups:$C_{14}:D_{14}$$C_{14}:C_{28}$$C_{14}:C_{28}$$C_{14}.D_{14}$$C_{14}.D_{14}$$C_4\times D_{14}$$C_4\times D_{14}$

Other information

Möbius function$-1$
Projective image$D_7\times D_{14}$