Subgroup ($H$) information
| Description: | $C_{28}.D_{14}$ | 
| Order: | \(784\)\(\medspace = 2^{4} \cdot 7^{2} \) | 
| Index: | \(2\) | 
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) | 
| Generators: | 
		
    $abc^{14}, c^{4}, c^{7}, c^{14}, b^{14}, b^{4}c^{14}$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_{28}.D_{28}$ | 
| Order: | \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \) | 
| Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2$ | 
| Order: | \(2\) | 
| Exponent: | \(2\) | 
| Automorphism Group: | $C_1$, of order $1$ | 
| Outer Automorphisms: | $C_1$, of order $1$ | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7^2.C_6^2.C_2^6$ | 
| $\operatorname{Aut}(H)$ | $C_7^2.(C_2\times C_6\times D_4).\SO(3,7)$ | 
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(28224\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7^{2} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) | 
| $W$ | $C_7:D_{28}$, of order \(392\)\(\medspace = 2^{3} \cdot 7^{2} \) | 
Related subgroups
Other information
| Möbius function | $-1$ | 
| Projective image | $C_{14}:D_{28}$ |