Properties

Label 1568.405.4.e1.a1
Order $ 2^{3} \cdot 7^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^2:Q_8$
Order: \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $ab, c^{28}, b^{2}, c^{14}, c^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{56}.D_{14}$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^2.C_6^2.C_2^5$
$\operatorname{Aut}(H)$ $C_7^2.(C_6\times D_4).\SO(3,7)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(14112\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_7\times D_{28}$, of order \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{56}.D_{14}$
Minimal over-subgroups:$C_{28}.D_{14}$$C_{56}:D_7$$C_7^2:Q_{16}$
Maximal under-subgroups:$C_7\times C_{28}$$C_7^2:C_4$$C_7:Q_8$$C_7:Q_8$$C_7:Q_8$$C_7:Q_8$$C_7:Q_8$

Other information

Möbius function$2$
Projective image$D_7\times D_{28}$