Subgroup ($H$) information
Description: | $C_7^2:Q_8$ |
Order: | \(392\)\(\medspace = 2^{3} \cdot 7^{2} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$ab, c^{28}, b^{2}, c^{14}, c^{8}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
Description: | $C_{56}.D_{14}$ |
Order: | \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^2.C_6^2.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_7^2.(C_6\times D_4).\SO(3,7)$ |
$\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(14112\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_7\times D_{28}$, of order \(784\)\(\medspace = 2^{4} \cdot 7^{2} \) |
Related subgroups
Other information
Möbius function | $2$ |
Projective image | $D_7\times D_{28}$ |