Properties

Label 1568.405.392.a1.a1
Order $ 2^{2} $
Index $ 2^{3} \cdot 7^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $c^{14}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $C_{56}.D_{14}$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $D_7\times D_{14}$
Order: \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $F_7^2:D_4$, of order \(14112\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{2} \)
Outer Automorphisms: $C_6\wr C_2$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^2.C_6^2.C_2^5$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(28224\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{56}:C_{14}$
Normalizer:$C_{56}.D_{14}$
Minimal over-subgroups:$C_{28}$$C_{28}$$C_{28}$$C_{28}$$C_{28}$$C_8$$C_2\times C_4$$D_4$$Q_8$$Q_8$$Q_8$$C_8$
Maximal under-subgroups:$C_2$

Other information

Möbius function$-392$
Projective image$D_7\times D_{28}$