Properties

Label 1568.405.28.k1.a1
Order $ 2^{3} \cdot 7 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times D_7$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a, c^{28}, c^{8}, b^{7}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{56}.D_{14}$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^2.C_6^2.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$Q_8\times D_7$
Normal closure:$C_{28}.D_{14}$
Core:$D_{14}$
Minimal over-subgroups:$C_{14}.D_{14}$$Q_8\times D_7$
Maximal under-subgroups:$D_{14}$$C_{28}$$C_7:C_4$$C_2\times C_4$

Other information

Number of subgroups in this conjugacy class$14$
Möbius function$0$
Projective image$D_7\times D_{28}$