Properties

Label 1568.405.16.c1.a1
Order $ 2 \cdot 7^{2} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:D_7$
Order: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $abc, c^{8}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{56}.D_{14}$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^2.C_6^2.C_2^5$
$\operatorname{Aut}(H)$ $C_7^2.\GL(2,7)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \)
$\operatorname{res}(S)$$F_7^2$, of order \(1764\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_7^2$, of order \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{14}.D_{14}$
Normal closure:$C_7:D_{28}$
Core:$C_7^2$
Minimal over-subgroups:$C_7:D_{14}$
Maximal under-subgroups:$C_7^2$$D_7$$D_7$$D_7$$D_7$$D_7$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$0$
Projective image$C_{56}.D_{14}$