Subgroup ($H$) information
Description: | $C_7:D_7$ |
Order: | \(98\)\(\medspace = 2 \cdot 7^{2} \) |
Index: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$abc, c^{8}, b^{2}$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_{56}.D_{14}$ |
Order: | \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \) |
Exponent: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^2.C_6^2.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_7^2.\GL(2,7)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \) |
$\operatorname{res}(S)$ | $F_7^2$, of order \(1764\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $D_7^2$, of order \(196\)\(\medspace = 2^{2} \cdot 7^{2} \) |
Related subgroups
Centralizer: | $C_2$ | |||||
Normalizer: | $C_{14}.D_{14}$ | |||||
Normal closure: | $C_7:D_{28}$ | |||||
Core: | $C_7^2$ | |||||
Minimal over-subgroups: | $C_7:D_{14}$ | |||||
Maximal under-subgroups: | $C_7^2$ | $D_7$ | $D_7$ | $D_7$ | $D_7$ | $D_7$ |
Other information
Number of subgroups in this conjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $C_{56}.D_{14}$ |