Properties

Label 1568.264.8.b1.a1
Order $ 2^{2} \cdot 7^{2} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times C_{28}$
Order: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $b^{14}c^{7}, c^{2}, b^{28}, b^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{14}^2.D_4$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times C_7:C_3).C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2\times \GL(2,7)$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_6^2$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(224\)\(\medspace = 2^{5} \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{14}\times C_{56}$
Normalizer:$C_{14}^2.D_4$
Minimal over-subgroups:$C_{14}\times C_{28}$$C_7^2:Q_8$$C_7^2:Q_8$
Maximal under-subgroups:$C_7\times C_{14}$$C_{28}$$C_{28}$$C_{28}$$C_{28}$$C_{28}$

Other information

Möbius function$0$
Projective image$D_{14}:C_4$