Properties

Label 1568.264.49.a1.a1
Order $ 2^{5} $
Index $ 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8:C_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(49\)\(\medspace = 7^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b^{7}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{14}^2.D_4$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times C_7:C_3).C_2^6.C_2$
$\operatorname{Aut}(H)$ $D_4\times C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$D_4\times C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$Q_8:C_{28}$
Normal closure:$C_{14}.Q_{16}$
Core:$C_2\times C_8$
Minimal over-subgroups:$C_{14}.Q_{16}$$Q_8:C_{28}$
Maximal under-subgroups:$C_2\times C_8$$C_2\times Q_8$$C_4:C_4$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$1$
Projective image$C_7\times D_{28}$