Properties

Label 1568.264.4.f1.a1
Order $ 2^{3} \cdot 7^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times C_{56}$
Order: \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $b^{7}, c^{2}, b^{14}, b^{8}, b^{28}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{14}^2.D_4$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times C_7:C_3).C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_2^2\times \GL(2,7)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2^2\times C_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(56\)\(\medspace = 2^{3} \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{14}\times C_{56}$
Normalizer:$C_{14}\times C_{56}$
Normal closure:$C_{14}\times C_{56}$
Core:$C_7\times C_{28}$
Minimal over-subgroups:$C_{14}\times C_{56}$
Maximal under-subgroups:$C_7\times C_{28}$$C_{56}$$C_{56}$$C_{56}$$C_{56}$$C_{56}$$C_{56}$$C_{56}$$C_{56}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{14}:C_4$