Properties

Label 1568.224.16.b1.a1
Order $ 2 \cdot 7^{2} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\times C_{14}$
Order: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $b^{28}c^{7}, c^{2}, b^{8}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{14}^2.D_4$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $\SD_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^2.C_6^2.C_2^6$
$\operatorname{Aut}(H)$ $\GL(2,7)$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3136\)\(\medspace = 2^{6} \cdot 7^{2} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{14}\times C_{28}$
Normalizer:$C_{14}^2.D_4$
Minimal over-subgroups:$C_{14}^2$$C_7^2:C_4$
Maximal under-subgroups:$C_7^2$$C_{14}$$C_{14}$$C_{14}$$C_{14}$$C_{14}$

Other information

Möbius function$0$
Projective image$C_{14}.D_{28}$