Properties

Label 1568.136.4.c1.b1
Order $ 2^{3} \cdot 7^{2} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{49}:Q_8$
Order: \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Generators: $abc^{57}, b^{4}, c^{58}, b^{6}, c^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{98}:Q_{16}$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{98}.C_{42}.C_2^6$
$\operatorname{Aut}(H)$ $C_{98}.C_{42}.C_2^2$
$\card{W}$\(392\)\(\medspace = 2^{3} \cdot 7^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{98}:Q_{16}$
Minimal over-subgroups:$C_{98}:Q_8$$C_{49}:Q_{16}$$C_{49}:Q_{16}$
Maximal under-subgroups:$C_{196}$$C_{49}:C_4$$C_7:Q_8$
Autjugate subgroups:1568.136.4.c1.a1

Other information

Möbius function not computed
Projective image not computed