Properties

Label 15600.d.650.g1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2 \cdot 5^{2} \cdot 13 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(650\)\(\medspace = 2 \cdot 5^{2} \cdot 13 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left[ \left(\begin{array}{rrrr} 1 & 0 & 4 & 2 \\ 2 & 2 & 0 & 4 \\ 1 & 1 & 3 & 0 \\ 1 & 2 & 1 & 3 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 2 & 4 & 4 & 2 \\ 1 & 4 & 4 & 3 \\ 4 & 4 & 2 & 0 \\ 1 & 0 & 4 & 2 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 3 & 0 & 1 & 4 \\ 3 & 3 & 4 & 4 \\ 0 & 4 & 1 & 1 \\ 3 & 4 & 4 & 3 \end{array}\right) \right], \left[ \left(\begin{array}{rrrr} 1 & 1 & 1 & 4 \\ 0 & 4 & 0 & 2 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $\POMinus(4,5)$
Order: \(15600\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \)
Exponent: \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSL(2,25).C_2^2$, of order \(31200\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 13 \)
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times S_4$
Normal closure:$\PSL(2,25)$
Core:$C_1$
Minimal over-subgroups:$S_5$$C_2\times S_4$
Maximal under-subgroups:$A_4$$D_4$$S_3$
Autjugate subgroups:15600.d.650.g1.a2

Other information

Number of subgroups in this conjugacy class$325$
Möbius function$0$
Projective image$\POMinus(4,5)$