Subgroup ($H$) information
Description: | $C_5:F_5$ |
Order: | \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
Index: | \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Generators: |
$\left[ \left(\begin{array}{rrrr}
2 & 0 & 1 & 1 \\
2 & 1 & 1 & 4 \\
3 & 0 & 0 & 1 \\
4 & 0 & 3 & 2
\end{array}\right) \right], \left[ \left(\begin{array}{rrrr}
2 & 2 & 3 & 4 \\
2 & 3 & 3 & 0 \\
1 & 2 & 3 & 1 \\
3 & 1 & 2 & 2
\end{array}\right) \right], \left[ \left(\begin{array}{rrrr}
1 & 1 & 4 & 2 \\
3 & 4 & 4 & 1 \\
2 & 3 & 1 & 1 \\
3 & 1 & 1 & 3
\end{array}\right) \right], \left[ \left(\begin{array}{rrrr}
2 & 3 & 1 & 2 \\
1 & 0 & 3 & 2 \\
0 & 0 & 1 & 1 \\
3 & 3 & 0 & 3
\end{array}\right) \right]$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $\POMinus(4,5)$ |
Order: | \(15600\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \) |
Exponent: | \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \) |
Derived length: | $1$ |
The ambient group is nonabelian, almost simple, and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\PSL(2,25).C_2^2$, of order \(31200\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \cdot 13 \) |
$\operatorname{Aut}(H)$ | $F_5\wr C_2$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \) |
$W$ | $D_5:F_5$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \) |
Related subgroups
Centralizer: | $C_1$ | ||
Normalizer: | $D_5:F_5$ | ||
Normal closure: | $\POMinus(4,5)$ | ||
Core: | $C_1$ | ||
Minimal over-subgroups: | $C_5^2:C_3:C_4$ | $D_5:F_5$ | |
Maximal under-subgroups: | $C_5:D_5$ | $F_5$ | $F_5$ |
Other information
Number of subgroups in this conjugacy class | $78$ |
Möbius function | $0$ |
Projective image | $\POMinus(4,5)$ |