Properties

Label 15552.il.12.x1
Order $ 2^{4} \cdot 3^{4} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(10,11)(12,13), (1,9,8), (14,15,16), (8,9), (2,5,6)(3,4,7)(10,13)(11,12), (2,5,6), (3,4,7), (2,3,6,4,5,7)(8,9)(10,12)(14,15)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $(C_3\times S_3^3):S_4$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^4.D_6^2$
$\operatorname{Aut}(H)$ $C_3:S_3.(S_3\times A_4).C_2^5$
$W$$C_2\times S_3^3$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3^4.C_2^4.C_2$
Normal closure:$(C_3\times S_3^3):S_4$
Core:$C_3^2\times C_6^2$
Minimal over-subgroups:$C_3^4.C_2^4.C_2$
Maximal under-subgroups:$C_3^4:C_2^3$$S_3\times C_3^2:C_{12}$$C_3^4:D_4$$C_3^3:D_{12}$$C_3:C_6^3$$C_3^4:D_4$$C_3^4:D_4$$C_6^3:C_2$$C_6^2:D_6$$C_6^2:D_6$$C_6^2:D_6$$C_6^2:D_6$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(C_3\times S_3^3):S_4$