Properties

Label 15552.fe.72.cz1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.C_6^2$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,7,5,2)(3,4,6,8)(13,18)(14,17)(15,20)(16,19), (12,16,19)(13,14,20)(15,18,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_6^2.C_2^2$
$\operatorname{Aut}(H)$ $S_3\times D_4\times \GL(2,3)$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$W$$S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_6^3.C_2^3$
Normal closure:$C_6^4:S_3$
Core:$C_3$
Minimal over-subgroups:$C_6\times C_3^2:C_{12}$$C_6^2:C_{12}$$C_6^2.D_6$$D_6:C_6^2$
Maximal under-subgroups:$C_3\times C_6^2$$C_3^2:C_{12}$$C_6\times C_{12}$$C_6:C_{12}$$C_6:C_{12}$$C_6:C_{12}$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$C_6^4:D_6$