Properties

Label 15552.fe.6.k1
Order $ 2^{5} \cdot 3^{4} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6^2:S_4$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(3,4)(5,7)(6,8)(13,18)(14,17)(15,20)(16,19), (2,7)(3,6), (3,6,7)(4,5,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_6^2.C_2^2$
$\operatorname{Aut}(H)$ $(C_3\times A_4^2).D_6^2$
$W$$(C_2\times C_6^2):S_4$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$(S_3\times C_6^2):S_4$
Normal closure:$C_6^4:S_3$
Core:$C_3\times C_6^2:A_4$
Minimal over-subgroups:$C_6^4:S_3$$(S_3\times C_6^2):S_4$
Maximal under-subgroups:$C_3\times C_6^2:A_4$$C_6^3.C_2^2$$C_6^2:S_4$$C_6^2:S_4$$C_6^2:S_4$$C_3^3:S_4$$C_3^3:S_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_6^4:D_6$