Properties

Label 15552.fe.6.b1
Order $ 2^{5} \cdot 3^{4} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_6^3):C_6$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,6)(3,7), (2,7)(3,6), (3,6,7)(4,5,8)(9,10,11)(12,15,20)(13,16,17)(14,19,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_6^2.C_2^2$
$\operatorname{Aut}(H)$ $(C_2^3\times C_6).C_3^3.C_2^3.C_2\times S_3$
$W$$(S_3\times C_6^2):S_4$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_6^4:D_6$
Complements:$S_3$ $S_3$ $S_3$
Minimal over-subgroups:$C_6^4:C_6$$(S_3\times C_6^2):S_4$
Maximal under-subgroups:$C_3\times C_6^2:A_4$$C_6^3.C_2^2$$(C_2\times C_6^2):A_4$$(C_6\times D_6):A_4$$S_3\times C_3^2:A_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$3$
Projective image$C_6^4:D_6$